IoT-CryptoDiet: Implementing a Lightweight Cryptographic Library based on ECDH and ECDSA for the Development of Secure and Privacy-Preserving Protocols in Contiki-NG



Even though the idea of transforming basic objects to smart objects with the aid sensors is not new, it is only now that we have started seeing the incredible impact of this digital transformation in our societies. There is no doubt that the Internet of Things (IoT) has the power to change our world and drive us to a complete social evolution. This is something that has been well understood by the research and industrial communities that have been investing significant resources in the field of IoT. In business and industry, there are thousands of IoT use cases and real-life IoT deployments across a variety of sectors (e.g. industry 4.0 and smart factories, smart cities, etc.). However, due to the vastly resource-constrained nature of the devices used in IoT, implementing secure and privacy-preserving services, using, for example, standard asymmetric cryptographic algorithms, has been a real challenge. The majority of IoT devices on the market currently employ the use of various forms of symmetric cryptography such as key pre-distribution. The overall efficiency of such implementations correlates directly to the size of the IoT environment and the deployment method. In this paper, we implement a lightweight cryptographic library that can be used to secure communication protocols between multiple communicating nodes without the need for external trusted entities or a server. Our work focuses on extending the functionalities of the User Datagram Protocol (UDP) broadcast application on the Contiki-NG Operating System (OS) platform
Date made available24 Feb 2020

Field of science, Statistics Finland

  • 113 Computer and information sciences

Cite this