TY - GEN
T1 - A Collaborative Approach Using Neural Networks for BLE-RSS Lateration-Based Indoor Positioning
AU - Pascacio, Pavel
AU - Torres-Sospedra, Joaquín
AU - Casteleyn, Sven
AU - Lohan, Elena Simona
N1 - Funding Information:
This work was supported by the European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt)
Funding Information:
Corresponding Author: J. Torres-Sospedra ([email protected]) This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt).
Publisher Copyright:
© 2022 IEEE.
JUFOID=58177
PY - 2022
Y1 - 2022
N2 - In daily life, mobile and wearable devices with high computing power, together with anchors deployed in indoor en-vironments, form a common solution for the increasing demands for indoor location-based services. Within the technologies and methods currently in use for indoor localization, the approaches that rely on Bluetooth Low Energy (BLE) anchors, Received Signal Strength (RSS), and lateration are among the most popular, mainly because of their cheap and easy deployment and accessible infrastructure by a variety of devices. Never-theless, such BLE- and RSS-based indoor positioning systems are prone to inaccuracies, mostly due to signal fluctuations, poor quantity of anchors deployed in the environment, and/or inappropriate anchor distributions, as well as mobile device hardware variability. In this paper, we address these issues by using a collaborative indoor positioning approach, which exploits neighboring devices as additional anchors in an extended positioning network. The collaborating devices' information (i.e., estimated positions and BLE- RSS) is processed using a multilayer perceptron (MLP) neural network by taking into account the device specificity in order to estimate the relative distances. After this, the lateration is applied to collaboratively estimate the device position. Finally, the stand-alone and collaborative position estimates are combined, providing the final position estimate for each device. The experimental results demonstrate that the proposed collaborative approach outperforms the stand-alone lateration method in terms of positioning accuracy.
AB - In daily life, mobile and wearable devices with high computing power, together with anchors deployed in indoor en-vironments, form a common solution for the increasing demands for indoor location-based services. Within the technologies and methods currently in use for indoor localization, the approaches that rely on Bluetooth Low Energy (BLE) anchors, Received Signal Strength (RSS), and lateration are among the most popular, mainly because of their cheap and easy deployment and accessible infrastructure by a variety of devices. Never-theless, such BLE- and RSS-based indoor positioning systems are prone to inaccuracies, mostly due to signal fluctuations, poor quantity of anchors deployed in the environment, and/or inappropriate anchor distributions, as well as mobile device hardware variability. In this paper, we address these issues by using a collaborative indoor positioning approach, which exploits neighboring devices as additional anchors in an extended positioning network. The collaborating devices' information (i.e., estimated positions and BLE- RSS) is processed using a multilayer perceptron (MLP) neural network by taking into account the device specificity in order to estimate the relative distances. After this, the lateration is applied to collaboratively estimate the device position. Finally, the stand-alone and collaborative position estimates are combined, providing the final position estimate for each device. The experimental results demonstrate that the proposed collaborative approach outperforms the stand-alone lateration method in terms of positioning accuracy.
KW - Bluetooth Low Energy
KW - Collaborative Indoor Positioning
KW - Multilayer Perceptron
KW - Received Signal Strength
U2 - 10.1109/IJCNN55064.2022.9892484
DO - 10.1109/IJCNN55064.2022.9892484
M3 - Conference contribution
AN - SCOPUS:85140750422
SN - 9781665495264
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PB - IEEE
T2 - International Joint Conference on Neural Networks
Y2 - 18 July 2022 through 23 July 2022
ER -