A machine and deep learning analysis among SonarQube rules, product, and process metrics for fault prediction

Francesco Lomio, Sergio Moreschini, Valentina Lenarduzzi

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
59 Downloads (Pure)

Abstract

Background: Developers spend more time fixing bugs refactoring the code to increase the maintainability than developing new features. Researchers investigated the code quality impact on fault-proneness, focusing on code smells and code metrics. Objective: We aim at advancing fault-inducing commit prediction using different variables, such as SonarQube rules, product, process metrics, and adopting different techniques. Method: We designed and conducted an empirical study among 29 Java projects analyzed with SonarQube and SZZ algorithm to identify fault-inducing and fault-fixing commits, computing different product and process metrics. Moreover, we investigated fault-proneness using different Machine and Deep Learning models. Results: We analyzed 58,125 commits containing 33,865 faults and infected by more than 174 SonarQube rules violated 1.8M times, on which 48 software product and process metrics were calculated. Results clearly identified a set of features that provided a highly accurate fault prediction (more than 95% AUC). Regarding the performance of the classifiers, Deep Learning provided a higher accuracy compared with Machine Learning models. Conclusion: Future works might investigate whether other static analysis tools, such as FindBugs or Checkstyle, can provide similar or different results. Moreover, researchers might consider the adoption of time series analysis and anomaly detection techniques.

Original languageEnglish
Article number189
JournalEmpirical Software Engineering
Volume27
Issue number7
DOIs
Publication statusPublished - 2022
Publication typeA1 Journal article-refereed

Keywords

  • Deep learning
  • Fault prediction
  • Machine learning
  • Software metrics
  • SonarQube

Publication forum classification

  • Publication forum level 3

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'A machine and deep learning analysis among SonarQube rules, product, and process metrics for fault prediction'. Together they form a unique fingerprint.

Cite this