A robust AMMI model for the analysis of genotype-by-environment data

Paulo C. Rodrigues, Andreia Monteiro, Vanda M. Lourenço

    Research output: Contribution to journalArticleScientificpeer-review

    15 Citations (Scopus)


    Motivation: One of the most widely used models to analyse genotype-by-environment data is the additive main effects and multiplicative interaction (AMMI) model. Genotype-by-environment data resulting from multi-location trials are usually organized in two-way tables with genotypes in the rows and environments (location-year combinations) in the columns. The AMMI model applies singular value decomposition (SVD) to the residuals of a specific linear model, to decompose the genotype-by-environment interaction (GEI) into a sum of multiplicative terms. However, SVD, being a least squares method, is highly sensitive to contamination and the presence of even a single outlier, if extreme, may draw the leading principal component towards itself resulting in possible misinterpretations and in turn lead to bad practical decisions. Since, as in many other real-life studies the distribution of these data is usually not normal due to the presence of outlying observations, either resulting from measurement errors or sometimes from individual intrinsic characteristics, robust SVD methods have been suggested to help overcome this handicap. Results: We propose a robust generalization of the AMMI model (the R-AMMI model) that overcomes the fragility of its classical version when the data are contaminated. Here, robust statistical methods replace the classic ones to model, structure and analyse GEI. The performance of the robust extensions of the AMMI model is assessed through a Monte Carlo simulation study where several contamination schemes are considered. Applications to two real plant datasets are also presented to illustrate the benefits of the proposed methodology, which can be broadened to both animal and human genetics studies. Availability and implementation: Source code implemented in R is available in the supplementary material under the function r-AMMI.

    Original languageEnglish
    Article number66
    Pages (from-to)58-66
    Number of pages9
    Issue number1
    Publication statusPublished - 2015
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 3


    Dive into the research topics of 'A robust AMMI model for the analysis of genotype-by-environment data'. Together they form a unique fingerprint.

    Cite this