Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection

Laura Valtonen, Saku J. Mäkinen, Johanna Kirjavainen

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
10 Downloads (Pure)

Abstract

Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.
Original languageEnglish
Pages (from-to)88-113
JournalORGANIZATIONAL RESEARCH METHODS
Volume27
Issue number1
Early online date21 Sept 2022
DOIs
Publication statusPublished - Jan 2024
Publication typeA1 Journal article-refereed

Keywords

  • Clustering
  • Data preprocessing
  • Exploratory data analysis
  • Pattern discovery
  • Topic modeling
  • Unsupervised machine learning

Publication forum classification

  • Publication forum level 3

Fingerprint

Dive into the research topics of 'Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection'. Together they form a unique fingerprint.

Cite this