Abstract
In quantum optical Enhancement of Index of Refraction (EIR), coherence and quantum interference render the atomic systems to exhibit orders of magnitude higher susceptibilities with vanishing or even negative absorption at their resonances. Here we show the plasmonic analogue of the quantum optical EIR effect in an optical system and further implement this in a linear all-optical switching mechanism. We realize plasmon-induced EIR using a particular plasmonic metasurface consisting of a square array of L-shaped meta-molecules. In contrast to the conventional methods, this approach provides a scheme to modulate the amplitude of incident signals by coherent control of absorption without implementing gain materials or nonlinear processes. Therefore, light is controlled by applying ultra-low intensity at the extreme levels of spatiotemporal localization. In the pursuit of potential applications of linear all-optical switching devices, this scheme may introduce an effective tool for improving the modulation strength of optical modulators and switches through the amplification of input signals at ultra-low power.
Original language | English |
---|---|
Article number | 3114 |
Journal | Nature Communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jun 2022 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 3