Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks

Irena Ivanišević, Marin Kovačić, Marko Zubak, Antonia Ressler, Sara Krivačić, Zvonimir Katančić, Iva Gudan Pavlović, Petar Kassal

Research output: Contribution to journalArticleScientificpeer-review


The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq–1, 0.57 Ω sq–1 and 19.7 Ω sq–1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.

Original languageEnglish
Article number4252
Issue number23
Publication statusPublished - 2022
Publication typeA1 Journal article-refereed


  • amphiphilic particles
  • conductive ink
  • density functional theory
  • flexible electronics
  • inkjet printing
  • silver nanoparticles

Publication forum classification

  • Publication forum level 1

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Materials Science(all)


Dive into the research topics of 'Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks'. Together they form a unique fingerprint.

Cite this