Application of digital PCR for public health-related water quality monitoring

Ananda Tiwari, Warish Ahmed, Sami Oikarinen, Samendra P. Sherchan, Annamari Heikinheimo, Guangming Jiang, Stuart L. Simpson, Justin Greaves, Aaron Bivins

    Research output: Contribution to journalReview Articlepeer-review

    1 Citation (Scopus)
    30 Downloads (Pure)


    Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.

    Original languageEnglish
    Article number155663
    Number of pages12
    JournalScience of the Total Environment
    Publication statusPublished - 2022
    Publication typeA2 Review article in a scientific journal


    • Digital PCR
    • Droplet digital PCR
    • Public health microbiology
    • Water microbiology

    Publication forum classification

    • Publication forum level 2

    ASJC Scopus subject areas

    • Environmental Engineering
    • Environmental Chemistry
    • Waste Management and Disposal
    • Pollution


    Dive into the research topics of 'Application of digital PCR for public health-related water quality monitoring'. Together they form a unique fingerprint.

    Cite this