Abstract
Aims: We assessed the value of automated MRI quantification methods in the differential diagnosis of behavioral-variant frontotemporal dementia (bvFTD) from Alzheimer disease (AD), Lewy body dementia (LBD), and subjective memory complaints (SMC). We also examined the role of the C9ORF72-related genetic status in the differentiation sensitivity. Methods: The MRI scans of 50 patients with bvFTD (17 C9ORF72 expansion carriers) were analyzed using 6 quantification methods as follows: voxel-based morphometry (VBM), tensor-based morphometry, volumetry (VOL), manifold learning, grading, and white-matter hyperintensities. Each patient was then individually compared to an independent reference group in order to attain diagnostic suggestions. Results: Only VBM and VOL showed utility in correctly identifying bvFTD from our set of data. The overall classification sensitivity of bvFTD with VOL + VBM achieved a total sensitivity of 60%. Using VOL + VBM, 32% were misclassified as having LBD. There was a trend of higher values for classification sensitivity of the C9ORF72 expansion carriers than noncarriers. Conclusion: VOL, VBM, and their combination are effective in differential diagnostics between bvFTD and AD or SMC. However, MRI atrophy profiles for bvFTD and LBD are too similar for a reliable differentiation with the quantification methods tested in this study.
Original language | English |
---|---|
Pages (from-to) | 51-59 |
Number of pages | 9 |
Journal | Dementia and Geriatric Cognitive Disorders Extra |
Volume | 8 |
DOIs | |
Publication status | Published - 2018 |
Externally published | Yes |
Publication type | A1 Journal article-refereed |
Funding
This work received funding from the following bodies: European Union’s Seventh Frame-work Programme for research, technological development, and demonstration under grant agreement No. 611005 (PredictND); VTR funding from Kuopio University Hospital; the Finnish Medical Foundation; the Olvi Foundation; the Finnish Alzheimer Research Association; the Finnish Brain Foundation; and the Päivikki and Sakari Sohlberg foundation.
Keywords
- Dementia
- Frontotemporal dementia
- Frontotemporal lobar degeneration
- Machine learning
- MRI
- Neuroimaging
ASJC Scopus subject areas
- Cognitive Neuroscience
- Psychiatry and Mental health