@article{c5493a8c7aee4180a3adaf6d8ad24b8a,
title = "Automorphism Groups of Alkane Graphs",
abstract = "The complete set of 618047 isomers of the alkanes with 4 to 20 carbon atoms has been created. From all isomers the automorphism groups have been calculated and evaluated in terms of size, number of asymmetric carbon atoms, and numeric properties of atom and bond orbits. The presence of a symmetric bond is related to the number of atom and bond orbits. Molecular descriptors based on automorphism data have been studied, including the known symmetry index, an entropy measure and the root of an orbit polynomial. These descriptors are closely related to the presence of symmetric substructures. The prediction performance of QSPR models for three molecular properties of alkanes and using binary substructure descriptors, is improved by adding descriptors based on automorphism data.",
keywords = "Alkane isomers, Automorphism groups, Molecular descriptors, Orbit polynomial, PLS, QSPR models, Repeated double cross validation, Symmetry",
author = "Kurt Varmuza and Matthias Dehmer and Frank Emmert-Streib and Peter Filzmoser",
note = "Funding Information: (Eds.: T. Engel, J. Gasteiger), Wiley VCH, Weinheim, Germany, 2018. [2] Chemical graph theory - Introduction and fundamentals (Eds.: D. Bonchev, D. H. Rouvray), Abacus Press, Amsterdam, The Netherlands, 1991. [3] N. Trinajsti{\'c}, Chemical graph theory, CRC Press, Boca Raton, FL, USA, 1992. [4] K. Balasubramanian, J. Chem. Inf. Comput. Sci. 1994, 34, 621–626. https://doi.org/10.1021/ci00019a022 [5] S. Bohanec, M. Perdih, J. Chem. Inf. Comput. Sci. 1993, 33, 719–726. https://doi.org/10.1021/ci00015a010 [6] M. Razinger, K. Balasubramanian, M. E. Munk, J. Chem. Inf. Comput. Sci. 1993, 33, 197–201. https://doi.org/10.1021/ci00012a003 [7] A. Kerber, MATCH Commun. Math. Comput. Chem. Acknowledgments ? The authors thank A ? Kerber ? R ? Laue 2018, 80, 733–744. ?University Bayreuth Z and M ? MerinGgeerrm?an Aerospace [8] M. Meringer, H. J. Cleaves, Phil. Trans. R. Soc. A Center, DLR Z for providing the software MOLGEN ? The work 2017, 375, 20160344. was supported by the Austrian Science Fund FWF ? project https://doi.org/10.1098/rsta.2016.0344 ?? [9] MOLGEN, Molecular structure generator, version 3.5., Benecke C., Gr{\"u}ner T., Grund R., Hohberger R., Appendix ?symbols Z Kerber A., Laue R., Wieland T., University of α size of automorphism group ? ? GAuZt?? Z ? number o-f auto Bayreuth, http://www.molgen.de (accessed Aug 31, morphism mappings 2021), Bayreuth, Germany, 1997. ai number of atoms in atom orbit i (i A䄀 ? kA)? ? 堀 [10] SubMat, Software for substructure searches in AOPT optimum number of ?LS components chemistry, Scsibrany H., Varmuza K., Vienna University bi number of bonds in bond orbit i (i A䄀 ? kB)? ? 堀 of Technology, http://www.lcm.tuwien.ac.at (accessed δ positive real root of orbit polynomial ? δA for atom orbits ? Aug 31, 2021), Vienna, Austria, 2004. δB for bond orbits [11] K. Varmuza, W. Demuth, M. Karlovits, H. Scsibrany, entropy ?informationcontentEZA?foratomorbits?EBfor Croat.Chem.Acta2005,78,141–149. bond orbits [12] R, A language and environment for statistical G graph computing, R Development Core Team, Foundation hj frequency of orbits with size j (j A䄀 ? ng)? ? ? for Statistical Computing, http://www.r-project.org k number of orbits ? kA for atom orbits ? kB for bond orbits (accessed Aug 31, 2021), Vienna, Austria, 2021. nA number of atoms ?vertices Z [13] B. D. McKay, A. Piperno, J. Symb. Comput. 2014, 60, nASYM number of asymmetric carbon atoms 94–112. nB number of bonds ?edges Z https://doi.org/10.1016/j.jsc.2013.09.003 nC number of carbon atoms [14] G. Csardi, T. Nepusz, V. Traag, S. Horvat, F. Zanini, nEQU number of structures ?within a set of isomers Z wkitAh= kB igraph reference manual, nISO number of isomers https://igraph.org/c/doc/igraph-docs.pdf ng maximum orbit size in a structure ?graph Z G (accessed Aug 31, 2021), Cambridge, MA, USA, 2020. nSYM number of structures ?within a set of isomers Z containing [15] I. Krasikov, A. Lev, D. T. Bhalchandra, Discrete Math. a symmetric bond 2002, 256, 489–493. adjusted squared ?earson correlation coefficient https://doi.org/10.1016/S0012-365X(02)00393-X symmetry index ? SA for atom orbits ? SB for bond orbits [16] M. Dehmer, A. Mowshowitz, Inf. Sci. 2011, 181, standard error of prediction 57–78. https://doi.org/10.1016/j.ins.2010.08.041 numberofuniquevaluesinanisomerset?e?g?,S,?δ ofE [17] A.Mowshowitz,M.Dehmer,Symmetry:Cultureand variable in the orbit polynomial Science 2010, 21, 321–327. Funding Information: The authors thank A. Kerber, R. Laue (University Bayreuth) and M. Meringer (German Aerospace Center, DLR) for providing the software MOLGEN. The work was supported by the Austrian Science Fund FWF, project P30031. Publisher Copyright: {\textcopyright} 2021 Croatian Chemical Society. All rights reserved.",
year = "2021",
doi = "10.5562/CCA3807",
language = "English",
volume = "94",
pages = "47--58",
journal = "CROATICA CHEMICA ACTA",
issn = "0011-1643",
publisher = "Croatian Chemical Society",
number = "1",
}