Abstract
Path tracing produces realistic results including global illumination using a unified simple rendering pipeline. Reducing the amount of noise to imperceptible levels without post-processing requires thousands of samples per pixel (spp), while currently it is only possible to render extremely noisy 1 spp frames in real time with desktop GPUs. However, post-processing can utilize feature buffers, which contain noise-free auxiliary data available in the rendering pipeline. Previously, regression-based noise filtering methods have only been used in offline rendering due to their high computational cost. In this paper we propose a novel regression-based reconstruction pipeline, called Blockwise Multi-Order Feature Regression (BMFR), tailored for path-traced 1 spp inputs that runs in real time. The high speed is achieved with a fast implementation of augmented QR factorization and by using stochastic regularization to address rank-deficient feature data. The proposed algorithm is 1.8× faster than the previous state-of-the-art real-time path tracing reconstruction method while producing better quality frame sequences.
Original language | English |
---|---|
Article number | 138 |
Journal | ACM Transactions on Graphics |
Volume | 38 |
Issue number | 5 |
DOIs | |
Publication status | Published - Jun 2019 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 3