Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells

    Research output: Contribution to journalArticleScientificpeer-review

    26 Downloads (Pure)

    Abstract

    Cellular forces, mechanics and other physical factors are important co-regulators of normal cell and tissue physiology. These cues are often misregulated in diseases such as cancer, where altered tissue mechanics contribute to the disease progression. Furthermore, intercellular tensile and compressive force-related signaling is highlighted in collective cell behavior during development. However, the mechanistic understanding on the role of physical forces in regulation of cellular physiology, including gene expression and signaling, is still lacking. This is partly because studies on the molecular mechanisms of force transmission require easily controllable experimental designs. These approaches should enable both easy mechanical manipulation of cells and, importantly, readouts ranging from microscopy imaging to biochemical assays. To achieve a robust solution for mechanical manipulation of cells, we developed devices built of LEGO bricks allowing manual, motorized and/or cyclic cell stretching and compression studies. By using these devices, we show that β -catenin responds differentially to epithelial monolayer stretching and lateral compression, either localizing more to the cell nuclei or cell–cell junctions, respectively. In addition, we show that epithelial compression drives cytoplasmic retention and phosphorylation of transcription coregulator YAP1. We provide a complete part listing and video assembly instructions, allowing other researchers to build and use the devices in cellular mechanics-related studies.
    Original languageEnglish
    Article number18520
    Number of pages14
    JournalScientific Reports
    Volume11
    DOIs
    Publication statusPublished - 16 Sept 2021
    Publication typeA1 Journal article-refereed

    Keywords

    • Mechanobiology
    • Lateral compression
    • Biophysics
    • Epithelium

    Publication forum classification

    • Publication forum level 1

    Fingerprint

    Dive into the research topics of 'Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells'. Together they form a unique fingerprint.

    Cite this