Chemical modification strategies for viscosity-dependent processing of gellan gum

Christine Gering, Anum Rasheed, Janne Koivisto, Jenny Parraga Meneses, Sampo Tuukkanen, Minna Kellomäki

    Research output: Contribution to journalArticleScientificpeer-review

    17 Citations (Scopus)
    31 Downloads (Pure)

    Abstract

    Recently, the hydrogel-forming polysaccharide gellan gum (GG) has gained popularity as a versatile biomaterial for tissue engineering purposes. Here, we examine the modification strategies suitable for GG to overcome processing-related limitations. We emphasize the thorough assessment of the viscoelastic and mechanical properties of both precursor solutions and final hydrogels. The investigated modification strategies include purification, oxidation, reductive chain scission, and blending. We correlate polymer flow and hydrogel forming capabilities to viscosity-dependent methods including casting, injection and printing. Native GG and purified NaGG are shear thinning and feasible for printing, being similar in gelation and compression behavior. Oxidized GGox possesses reduced viscosity, higher toughness, and aldehydes as functional groups, while scissored GGsciss has markedly lower molecular weight. To exemplify extrudability, select modification products are printed using an extrusion-based bioprinter utilizing a crosslinker bath. Our robust modification strategies have widened the processing capabilities of GG without affecting its ability to form hydrogels.
    Original languageEnglish
    Article number118335
    JournalCarbohydrate Polymers
    Volume269
    Early online date22 Jun 2021
    DOIs
    Publication statusPublished - Oct 2021
    Publication typeA1 Journal article-refereed

    Keywords

    • Hydrogel
    • Modified gellan gum
    • Viscoelastic properties
    • Mechanical testing
    • Bioprinting

    Publication forum classification

    • Publication forum level 1

    Fingerprint

    Dive into the research topics of 'Chemical modification strategies for viscosity-dependent processing of gellan gum'. Together they form a unique fingerprint.

    Cite this