Combination of Variable Loads in Structural Design

Research output: Contribution to journalArticleScientificpeer-review

109 Downloads (Pure)

Abstract

This study delves into the intricacies of variable load combination factors (ψ) within structural codes under fundamental design scenarios, with Eurocodes serving as the primary reference. Currently, variable loads are combined by adding one load, the leading load with its full value, and the other load, the accompanying load, with a reduced value multiplied by a combination factor ψ. This approach employs an independent load combination methodology, utilizing hypothetical reference materials. In contrast, this paper advocates for a shift towards dependent load combination, anchored in the use of actual reference materials. Specifically, it is proposed that imposed loads be combined without the combination factor, i.e., ψ = 1. Given that combination factors are in approximate unity or pertain to infrequent load cases, this research recommends the elimination of ψ from codes altogether. This recommendation stems from the recognition that the current combination factor calculation excels in cases with approximately equal loads with a significant reliability gain, while more frequent unequal loads introduce a minor reliability gain and harmful unsafe errors. Despite the overall minor safety advantage of about 2–3% being negligible considering unavoidable safe errors of about 7% in codes, this simplification significantly reduces code complexity, enhances user-friendliness, and substantially decreases the workload associated with design processes.

Original languageEnglish
Article number6466
JournalApplied Sciences
Volume14
Issue number15
DOIs
Publication statusPublished - Aug 2024
Publication typeA1 Journal article-refereed

Keywords

  • code
  • combination of variable loads
  • simplification of design
  • variable load

Publication forum classification

  • Publication forum level 1

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Combination of Variable Loads in Structural Design'. Together they form a unique fingerprint.

Cite this