Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial

    Research output: Contribution to journalArticleScientificpeer-review

    43 Citations (Scopus)

    Abstract

    Biopolymers are attractive candidates to fabricate biocompatible hydrogels, but the low water solubility of most of them at physiological pH has hindered their applications. To prepare a water-soluble derivative of chitosan (WSC) biopolymer, it was grafted with a small anionic amino acid, l-glutamic acid, using a single-step 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide coupling reaction. This resulted in a zwitterion-tethered structure onto the polymer backbone. The degree of substitution range was 13–16 ± 1.25%, which was controlled by varying the feeding reagent ratios. Differential scanning calorimetry- and X-ray diffraction-based analysis confirmed a transition from amorphous into a moderately amorphous/crystalline morphology after amino acid grafting, which made the derivative water-soluble at physiological pH. Composite hydrogels gelated within 60 s when using this WSC together with benzaldehyde-terminated 4-arm poly(ethylene glycol) as cross-linker. The compressive modulus of these hydrogels could be easily tuned between 4.0 ± 1.0 and 31 ± 2.5 kPa, either by changing the cross-linker concentration or total solid content in the final gel. The gels were injectable at the lowest cross-linker as well as total solid content, due to the enhanced elastic behavior. These hydrogels showed biodegradability during a 1 month incubation period in phosphate-buffered saline with weight remaining of 60 ± 1.5 and 44 ± 1.45% at pHs 7.4 and 6.5, respectively. The cytocompatibility of the gels was tested using the fibroblast cell line (i.e., WI-38), which showed good cell viability on the gel surface. Therefore, these hydrogels could be an important injectable biomaterial for delivery purpose in the future.
    Original languageEnglish
    Pages (from-to)11950-11960
    JournalACS Applied Materials & Interfaces
    Volume10
    Issue number14
    DOIs
    Publication statusPublished - 2018
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 2

    Fingerprint

    Dive into the research topics of 'Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial'. Together they form a unique fingerprint.

    Cite this