Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells

Arto Aho, Ville Polojärvi, Ville Markus Korpijärvi, Joel Salmi, Antti Tukiainen, Pekka Laukkanen, Mircea Guina

    Research output: Contribution to journalArticleScientificpeer-review

    49 Citations (Scopus)

    Abstract

    We have investigated the role of the nitrogen content, the growth parameters, and the annealing processes involved in molecular beam epitaxy of GaInNAs solar cells lattice-matched to GaAs. The nitrogen composition was varied between 1% and 5%. The influence of the growth temperature was assessed by performing photoluminescence, atomic force microscopy, X-ray diffraction, reflection high-energy electron diffraction, quantum efficiency and light-biased current-voltage measurements. The growth temperature ensuring the best cell parameters was found to be 440 C. At this temperature we were able to incorporate up to 4% of nitrogen and achieve a good material quality. Further increase of the N composition to 5% led to phase separation. For the lattice matched samples grown within the optimal temperature range, we have identified a clear (1×3) surface reconstruction. Using the optimized growth we have demonstrated a GaInNAs p-i-n solar cell structure containing 4% nitrogen, that exhibited a short-circuit current density as high as 33.8 mA/cm2 in respect to effective area illuminated. These measurements have been performed under real sun AM1.5 (~1000 W/m2) illumination. © 2014 Elsevier B.V.

    Translated title of the contributionComposition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells
    Original languageEnglish
    Pages (from-to)150-158
    Number of pages9
    JournalSolar Energy Materials and Solar Cells
    Volume124
    DOIs
    Publication statusPublished - May 2014
    Publication typeA1 Journal article-refereed

    Keywords

    • Concentrated photovoltaics
    • Dilute nitrides
    • GaInNAs
    • Multi-junction solar cells
    • Plasma-assisted molecular beam epitaxy

    Publication forum classification

    • Publication forum level 2

    ASJC Scopus subject areas

    • Renewable Energy, Sustainability and the Environment
    • Electronic, Optical and Magnetic Materials
    • Surfaces, Coatings and Films

    Fingerprint

    Dive into the research topics of 'Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells'. Together they form a unique fingerprint.

    Cite this