Abstract
Side-channel attacks are a serious threat to security critical software. To mitigate remote timing and cache-timing attacks, many ubiquitous cryptography software libraries feature constant-time implementations of cryptographic primitives. In this work, we disclose a vulnerability in OpenSSL 1.0.1u that recovers ECDSA private keys for the standardized elliptic curve P-256 despite the library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitigations. Exploiting this defect, we target the errant modular inversion code path with a cache-timing and improved performance degradation attack, recovering the inversion state sequence. We propose a new approach of extracting a variable number of nonce bits from these sequences, and improve upon the best theoretical result to recover private keys in a lattice attack with as few as 50 signatures and corresponding traces. As far as we are aware, this is the first timing attack against OpenSSL ECDSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256 constant-time scalar multiplication and furthermore, we extend our attack to TLS and SSH protocols, both linked to OpenSSL for P-256 ECDSA signing.
modular inversion with microarchitecture attack mitigations. Exploiting this defect, we target the errant modular inversion code path with a cache-timing and improved performance degradation attack, recovering the inversion state sequence. We propose a new approach of extracting a variable number of nonce bits from these sequences, and improve upon the best theoretical result to recover private keys in a lattice attack with as few as 50 signatures and corresponding traces. As far as we are aware, this is the first timing attack against OpenSSL ECDSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256 constant-time scalar multiplication and furthermore, we extend our attack to TLS and SSH protocols, both linked to OpenSSL for P-256 ECDSA signing.
Original language | English |
---|---|
Title of host publication | 26th USENIX Security Symposium (USENIX Security 17) |
Place of Publication | Vancouver, BC |
Publisher | The USENIX Association |
Pages | 83-98 |
Number of pages | 16 |
ISBN (Electronic) | 978-1-931971-40-9 |
Publication status | Published - 2017 |
Publication type | A4 Article in conference proceedings |
Event | USENIX SECURITY SYMPOSIUM - Duration: 1 Jan 1900 → … |
Conference
Conference | USENIX SECURITY SYMPOSIUM |
---|---|
Period | 1/01/00 → … |
Publication forum classification
- Publication forum level 1