Abstract
The widespread adoption of perovskite-based solar technologies is strictly related to the cost reduction of the hole-transporting component in the device, while maintaining compatibility with its absorbing active layer. To date, several organic systems have been developed to compete with the pioneering 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (Spiro-OMeTAD) used as the benchmarking hole-transporting material (HTM). However, an easily accessible platform to construct economically competitive HTM scaffolds as alternatives to Spiro-OMeTAD is still lacking. In this study, we propose a straightforward route (excluding organometallic cross-coupling reactions) to prepare nonconventional HTMs (BTF and BTC) based on a bithiophene core decorated with unsymmetrical triarylamine groups. The two HTMs are implemented in dopant-free n-i-p perovskite solar cells (PSCs) to evaluate their performance and long-term behaviour. Despite enhancing hole extraction and transport at the perovskite/HTM interface compared to the Spiro-OMeTAD benchmark, BTC does not perform exceptionally as an undoped HTM in PSCs (PCE = 14.0% vs. 16.5% of the doped Spiro-OMeTAD reference). Moreover, the efficiencies of unencapsulated devices rapidly degraded over time (T80: ∼57 days) due to weak HTM adhesion at the perovskite interface. Conversely, using tert-butylpyridine as the sole additive slightly increases performance (PCE = 14.8%) and remarkably improves device resilience to ambient exposure (PCE = 15.4% after 401 days), representing one of the longest shelf-stability experiments ever reported. Other dopant/additive formulations are unproductive in terms of both efficiencies and device resistance. These results indicate that focusing on the molecular design of low-cost HTMs and investigating the appropriate HTM/additive systems can be a promising strategy for developing efficient and stable PSCs.
Original language | English |
---|---|
Pages (from-to) | 172-184 |
Journal | Sustainable Energy and Fuels |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 20 Nov 2024 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 1
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology