Abstract
The Detection and Classification of Acoustic Scenes and Events Challenge Task 4 aims to advance sound event detection (SED) systems by leveraging training data with different supervision uncertainty. Participants are challenged in exploring how to best use training data from different domains and with varying annotation granularity (strong/weak temporal resolution, soft/hard labels), to obtain a robust SED system that can generalize across different scenarios. Crucially, annotation across available training datasets can be inconsistent and hence sound events of one dataset may be present but not annotated in an other one. As such, systems have to cope with potentially missing target labels during training. Moreover, as an additional novelty, systems are also evaluated on labels with different granularity in order to assess their robustness for different applications. To lower the entry barrier for participants, we developed an updated baseline system with several caveats to address these aforementioned problems. Results with our baseline system indicate that this research direction is promising and it is possible to obtain a stronger SED system by using diverse domain training data with missing labels compared to training a SED system for each domain separately.
Original language | English |
---|---|
Title of host publication | Proceedings of the Detection and Classification of Acoustic Scenes and Events 2024 Workshop (DCASE2024) |
Publisher | DCASE |
Pages | 31-35 |
ISBN (Electronic) | 978-952-03-3171-9 |
Publication status | Published - 2024 |
Publication type | A4 Article in conference proceedings |
Event | Workshop on Detection and Classification of Acoustic Scenes and Events - Tokyo, Japan Duration: 23 Oct 2024 → 25 Oct 2024 https://dcase.community/workshop2024/ |
Workshop
Workshop | Workshop on Detection and Classification of Acoustic Scenes and Events |
---|---|
Abbreviated title | DCASE2024 |
Country/Territory | Japan |
City | Tokyo |
Period | 23/10/24 → 25/10/24 |
Internet address |
Publication forum classification
- Publication forum level 1