Deep Neural Networks for Dynamic Range Compression in Mastering Applications

Stylianos Ioannis Mimilakis, Konstantinos Drossos, Tuomas Virtanen, Gerald Schuller

    Research output: Chapter in Book/Report/Conference proceedingConference contributionProfessional

    18 Citations (Scopus)

    Abstract

    The process of audio mastering often, if not always, includes various audio signal processing techniques such as frequency equalization and dynamic range compression. With respect to the genre and style of the audio content, the parameters of these techniques are controlled by a mastering engineer, in order to process the original audio material. This operation relies on musical and perceptually pleasing facets of the perceived acoustic characteristics, transmitted from the audio material under the mastering process. Modeling such dynamic operations, which involve adaptation regarding the audio content, becomes vital in automated applications since it significantly affects the overall performance. In this work we present a system capable of modelling such behavior focusing on the automatic dynamic range compression. It predicts frequency coefficients that allow the dynamic range compression, via a trained deep neural network, and applies them to unmastered audio signal served as input. Both dynamic range compression and the prediction of the corresponding frequency coefficients take place inside the time-frequency domain, using magnitude spectra acquired from a critical band filter bank, similar to humans’ peripheral auditory system. Results from conducted listening tests, incorporating professional music producers and audio mastering engineers, demonstrate on average an equivalent performance compared to professionally mastered audio content. Improvements were also observed when compared to relevant and commercial software.
    Original languageEnglish
    Title of host publicationAudio Engineering Society Convention 140
    PublisherAES Audio Engineering Society
    Publication statusPublished - May 2016
    Publication typeD3 Professional conference proceedings

    Fingerprint

    Dive into the research topics of 'Deep Neural Networks for Dynamic Range Compression in Mastering Applications'. Together they form a unique fingerprint.

    Cite this