Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride

Danis I. Badrtdinov, Carlos Rodriguez-Fernandez, Magdalena Grzeszczyk, Zhizhan Qiu, Kristina Vaklinova, Pengru Huang, Alexander Hampel, Kenji Watanabe, Takashi Taniguchi, Lu Jiong, Marek Potemski, Cyrus E. Dreyer, Maciej Koperski, Malte Rösner

Research output: Contribution to journalArticleScientificpeer-review

1 Downloads (Pure)

Abstract

A key advantage of utilizing van-der-Waals (vdW) materials as defect-hosting platforms for quantum applications is the controllable proximity of the defect to the surface or the substrate allowing for improved light extraction, enhanced coupling with photonic elements, or more sensitive metrology. However, this aspect results in a significant challenge for defect identification and characterization, as the defect's properties depend on the the atomic environment. This study explores how the environment can influence the properties of carbon impurity centers in hexagonal boron nitride (hBN). It compares the optical and electronic properties of such defects between bulk-like and few-layer films, showing alteration of the zero-phonon line energies and their phonon sidebands, and enhancements of inhomogeneous broadenings. To disentangle the mechanisms responsible for these changes, including the atomic structure, electronic wavefunctions, and dielectric screening, it combines ab initio calculations with a quantum-embedding approach. By studying various carbon-based defects embedded in monolayer and bulk hBN, it demonstrates that the dominant effect of the change in the environment is the screening of density–density Coulomb interactions between the defect orbitals. The comparative analysis of experimental and theoretical findings paves the way for improved identification of defects in low-dimensional materials and the development of atomic scale sensors for dielectric environments.

Original languageEnglish
JournalSmall
DOIs
Publication statusE-pub ahead of print - 17 Jun 2023
Publication typeA1 Journal article-refereed

Keywords

  • carbon centers in hexagonal boron nitride
  • dielectric environment
  • embedded impurities
  • screening effects to impurities

Publication forum classification

  • Publication forum level 3

ASJC Scopus subject areas

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'Dielectric Environment Sensitivity of Carbon Centers in Hexagonal Boron Nitride'. Together they form a unique fingerprint.

Cite this