Doping a bad metal: Origin of suppression of the metal-insulator transition in nonstoichiometric VO2

P. Ganesh, Frank Lechermann, Ilkka Kylänpää, Jaron T. Krogel, Paul R. C. Kent, Olle Heinonen

Research output: Contribution to journalArticleScientificpeer-review

19 Citations (Scopus)
17 Downloads (Pure)

Abstract

Rutile (R) phase VO2 is a quintessential example of a strongly correlated bad metal, which undergoes a metal-insulator transition (MIT) concomitant with a structural transition to a V-V dimerized monoclinic (M1) phase below TMIT∼340K. It has been experimentally shown that one can control this transition by doping VO2. In particular, doping with oxygen vacancies (VO) has been shown to completely suppress this MIT without any structural transition. We explain this suppression by elucidating the influence of oxygen vacancies on the electronic structure of the metallic R phase VO2, explicitly treating strong electron-electron correlations using dynamical mean-field theory (DMFT) as well as diffusion Monte Carlo (DMC) flavor of quantum Monte Carlo (QMC) techniques. DMC calculations show a gap closure in the M1 phase when vacancies are present, suggesting that when vacancies are introduced in the high-temperature rutile phase, the dimerized insulating phase cannot be reached when temperature is lowered. Both DMFT and DMC calculations of nonstoichiometric metallic rutile phase shows that this tendency not to dimerize in the presence of vacancies is because VO's tend to change the V−3d filling away from its nominal half-filled value, with the eπg orbitals competing with the otherwise dominant a1g orbital. Loss of this near orbital polarization of the a1g orbital is associated with a weakening of electron correlations, especially along the V-V dimerization direction. This removes a charge-density wave (CDW) instability along this direction above a critical doping concentration, which further suppresses the metal-insulator transition. Our study also suggests that the MIT is predominantly driven by a correlation-induced CDW instability along the V-V dimerization direction.
Original languageEnglish
Article number155129
Number of pages9
JournalPhysical Review B
Volume101
Issue number15
DOIs
Publication statusPublished - 23 Apr 2020
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 2

Fingerprint

Dive into the research topics of 'Doping a bad metal: Origin of suppression of the metal-insulator transition in nonstoichiometric VO2'. Together they form a unique fingerprint.

Cite this