Abstract
As the share of highly variable photovoltaic (PV) and wind power production increases, there is a growing need to smooth their fast power fluctuations. Some countries have set power ramp rate (RR) limits that the output powers of power plants may not exceed. In this study, the effects of RR limit on the sizing of energy storage systems (ESS) for PV, wind, and PV–wind power plants are examined. These effects have been studied prior for PV power plants. However, for the wind and PV–wind power plants, the effects of the RR limit are studied comprehensively for the first time. In addition, the effects of the size of the power plant are considered. The study is based on climatic measurements carried out with a sampling frequency of 10 Hz for a period of 153 days. The modeling of the PV and wind powers and the simulation of the RR-based control algorithm of the ESS were completed using MATLAB. The results show that as the applied RR limit increased from 1%/min to 20%/min, the required relative energy capacities of the ESSs of the PV, wind, and PV–wind power plants decreased roughly 88%, 89%, and 89%, respectively. The required relative power capacities of the ESSs of the PV, wind, and PV–wind power plants decreased roughly 15%, 12%, and 20%, respectively. The utilization of the ESSs was found to decrease as the applied RR limit increased and as the size of the power plant grew.
Original language | English |
---|---|
Article number | 4313 |
Number of pages | 18 |
Journal | Energies |
Volume | 16 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2023 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 1