Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2–based catalyst

Viktoria Golovanova, Maria Chiara Spadaro, Jordi Arbiol, Viacheslav Golovanov, Tapio T. Rantala, Teresa Andreu, Joan Ramón Morante

Research output: Contribution to journalArticleScientificpeer-review

33 Downloads (Pure)

Abstract

Utilization of the renewable energy sources is one of the main challenges in the state-of-the-art technologies for CO2 recycling. Here we have taken advantage of the solar light harvesting in the thermocatalytic approach to carbon dioxide methanation. The large-surface-area Ni/CeO2 catalyst produced by a scalable low-cost method was characterized and tested in the dark and under solar light irradiation conditions. Light-assisted CO2 conversion experiments as well as in-situ DRIFT spectrometry, performed at different illumination intensities, have revealed a dual effect of the incident photons on the catalytic properties of the two-component Ni/CeO2 catalyst. On the one hand, absorbed photons induce a localized surface plasmon resonance in the Ni nanoparticles followed by dissipation of the heat to the oxide matrix. On the other hand, the illumination activates the photocatalytic properties of the CeO2 support, which leads to an increase in the concentration of the intermediates being precursor for methane production. Analysis of the methane production at different temperatures and illumination conditions has shown that the methanation reaction in our case is controlled by a photothermally-activated process. The used approach has allowed us to increase the reaction rate up to 2.4 times and consequently to decrease the power consumption by 20 % under solar illumination, thus replacing the conventional thermal activation of the reaction with a green energy source.

Original languageEnglish
Article number120038
Number of pages12
JournalApplied Catalysis B: Environmental
Volume291
DOIs
Publication statusPublished - 15 Aug 2021
Publication typeA1 Journal article-refereed

Keywords

  • CO methanation
  • DRIFTS
  • LSPR
  • Nickel-ceria catalyst
  • Photothermal effect

Publication forum classification

  • Publication forum level 3

ASJC Scopus subject areas

  • Catalysis
  • General Environmental Science
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2–based catalyst'. Together they form a unique fingerprint.

Cite this