Electroluminescence in Unipolar-Doped In0.53Ga0.47As/AlAs Resonant-Tunneling Diodes: A Competition between Interband Tunneling and Impact Ionization

E.R. Brown, W.-D. Zhang, T.A. Growden, P. Fakhimi, P.R. Berger

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We measure and analyze the light emission from a room-temperature n-type unipolar-doped In0.53Ga0.47As/AlAs double-barrier resonant-tunneling diode (RTD) that occurs just above the In0.53Ga0.47As band edge and peaks around 1631 nm. The emission is attributed to electron-hole recombination emission made possible by holes generated in the high-field region on the collector side of the device by interband tunneling and impact ionization, which contribute comparable hole densities, according to our analysis. Although the external quantum efficiency (EQE) in our experimental configuration is rather low (≈2 × 10−5 at 3.0-V bias), limited by suboptimal output coupling, the internal quantum efficiency (IQE) is much higher (≈6% at 3.0-V bias), as derived from the experimental EQE and a radiometric analysis. To check this value and better understand the transport physics, we also carry out an independent estimate of the IQE using a combined interband-tunneling impact-ionization transport model, which yields an IQE of 10% at 3.0-V bias. The satisfactory agreement of theory with experimental data suggests that a RTD designed for better hole transport and superior optical coupling could become a useful light-emitting device, while retaining the intrinsic functionality of high-speed negative differential resistance, and all without the need for resistive p-type doping.
Original languageEnglish
Article number054008
JournalPhysical Review Applied
Volume16
Issue number5
DOIs
Publication statusPublished - 3 Nov 2021
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 2

Fingerprint

Dive into the research topics of 'Electroluminescence in Unipolar-Doped In0.53Ga0.47As/AlAs Resonant-Tunneling Diodes: A Competition between Interband Tunneling and Impact Ionization'. Together they form a unique fingerprint.

Cite this