Abstract
In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (< 10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge-dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %.
Original language | English |
---|---|
Pages (from-to) | 7359-7372 |
Number of pages | 14 |
Journal | Atmospheric Chemistry and Physics |
Volume | 20 |
Issue number | 12 |
DOIs | |
Publication status | Published - 25 Jun 2020 |
Publication type | A1 Journal article-refereed |
Funding
Financial support. This research has received funding from the European Commission Seventh Framework Programme and the European Union’s Horizon 2020 programme (Marie Skłodowska-Curie action no. 764991 “CLOUD-MOTION”; MC-COFUND grant no. 665779 and ERC projects nos. 616075 “NANODYNAMITE” and 714621 “GASPARCON”), the German Federal Ministry of Education and Research (grant no. 01LK1601A “CLOUD-16”), the Swiss National Science Foundation (project nos. 200020_152907, 20FI20_159851, 200021_169090, 200020_172602 and 20FI20_172622), the Academy of Finland (project nos. 296628, 299574, 307331 and 310682), the Austrian Science Fund (FWF; project nos. J-3951, P27295-N20 and J-4241), the Portuguese Foundation for Science and Technology (FCT; project no. CERN/FIS-COM/0014/2017), the U.S. National Science Foundation (grant nos. AGS-1649147, AGS-1801280, AGS-1602086 and AGS-1801329). Open access funding was provided by University of Vienna.
Publication forum classification
- Publication forum level 3
ASJC Scopus subject areas
- Atmospheric Science