TY - GEN
T1 - IEST: Interpolation-Enhanced Shearlet Transform for Light Field Reconstruction Using Adaptive Separable Convolution
AU - Gao, Yuan
AU - Koch, Reinhard
AU - Bregovic, Robert
AU - Gotchev, Atanas
PY - 2019/9
Y1 - 2019/9
N2 - The performance of a light field reconstruction algorithm is typically affected by the disparity range of the input Sparsely-Sampled Light Field (SSLF). This paper finds that (i) one of the state-of-the-art video frame interpolation methods, i.e. adaptive Separable Convolution (SepConv), is especially effective for the light field reconstruction on a SSLF with a small disparity range (<10 pixels); (ii) one of the state-of-the-art light field reconstruction methods, i.e. Shearlet Transformation (ST), is especially effective in reconstructing a light field from a SSLF with a moderate disparity range (10-20 pixels) or a large disparity range (> 20 pixels). Therefore, to make full use of both methods to solve the challenging light field reconstruction problem on SSLFs with moderate and large disparity ranges, a novel method, referred to as Interpolation-Enhanced Shearlet Transform (IEST), is proposed by incorporating these two approaches in a coarse-to-fine manner. Specifically, ST is employed to give a coarse estimation for the target light field, which is then refined by SepConv to improve the reconstruction quality of parallax views involving small disparity ranges. Experimental results show that IEST outperforms the other state-of-the-art light field reconstruction methods on nine challenging horizontalparallax evaluation SSLF datasets of different real-world scenes with moderate and large disparity ranges.
AB - The performance of a light field reconstruction algorithm is typically affected by the disparity range of the input Sparsely-Sampled Light Field (SSLF). This paper finds that (i) one of the state-of-the-art video frame interpolation methods, i.e. adaptive Separable Convolution (SepConv), is especially effective for the light field reconstruction on a SSLF with a small disparity range (<10 pixels); (ii) one of the state-of-the-art light field reconstruction methods, i.e. Shearlet Transformation (ST), is especially effective in reconstructing a light field from a SSLF with a moderate disparity range (10-20 pixels) or a large disparity range (> 20 pixels). Therefore, to make full use of both methods to solve the challenging light field reconstruction problem on SSLFs with moderate and large disparity ranges, a novel method, referred to as Interpolation-Enhanced Shearlet Transform (IEST), is proposed by incorporating these two approaches in a coarse-to-fine manner. Specifically, ST is employed to give a coarse estimation for the target light field, which is then refined by SepConv to improve the reconstruction quality of parallax views involving small disparity ranges. Experimental results show that IEST outperforms the other state-of-the-art light field reconstruction methods on nine challenging horizontalparallax evaluation SSLF datasets of different real-world scenes with moderate and large disparity ranges.
KW - Light Field Reconstruction
KW - Parallax View Generation
KW - Adaptive Separable Convolution
KW - Shearlet Transform
KW - Interpolation-Enhanced Shearlet Transform
U2 - 10.23919/EUSIPCO.2019.8903168
DO - 10.23919/EUSIPCO.2019.8903168
M3 - Conference contribution
SN - 978-1-5386-7300-3
T3 - European Signal Processing Conference
BT - 2019 27th European Signal Processing Conference (EUSIPCO)
PB - IEEE
T2 - European Signal Processing Conference
Y2 - 1 January 1900
ER -