Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation

Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, Antonio Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, Antonio Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga GarmashMarc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kuerten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, Antonio Tome, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, Urs Baltensperger

Research output: Contribution to journalArticleScientificpeer-review

29 Citations (Scopus)

Abstract

It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1-2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of alpha-pinene at 5 degrees C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and -25 degrees C). Most negative HOM clusters include a nitrate (NO3-) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) 4) ion, and the spectra are characterized by mass bands that differ in their molecular weight by similar to 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (-25 degrees C), the presence of C-30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.
Original languageEnglish
Pages (from-to)65-79
Number of pages15
JournalAtmospheric Chemistry and Physics
Volume18
Issue number1
DOIs
Publication statusPublished - 2018
Externally publishedYes
Publication typeA1 Journal article-refereed

Keywords

  • 114 Physical sciences
  • SULFURIC-ACID
  • OZONOLYSIS PRODUCTS
  • 116 Chemical sciences
  • ALPHA-PINENE
  • OXIDATION-PRODUCTS
  • PARTICLE FORMATION
  • CHEMISTRY
  • ATMOSPHERIC AEROSOL NUCLEATION
  • GROWTH
  • MOBILITY
  • ORGANIC-MOLECULES

Fingerprint

Dive into the research topics of 'Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation'. Together they form a unique fingerprint.

Cite this