Abstract
While the amorphous state of a chalcogenide phase-change material is formed inside an electronic-memory device via Joule heating, caused by an applied voltage pulse, it is in the presence of excess field-induced electrons and holes. Here, hybrid density-functional-theory calculations for glassy Ge2Sb2Te5 demonstrate that extra electrons are trapped spontaneously, creating deep traps in the band gap. Hole self-trapping is also energetically favourable, producing states around midgap. The traps have a relatively low ionization energy, indicating that they can easily be thermally released. Near-linear triatomic Te-Ge/Sb-Te/Ge/Sb environments are the structural motifs where the extra electrons/holes are trapped inside the glass network, highlighting that the intrinsic axial bonds of octahedral-like sites in amorphous Ge2Sb2Te5 can serve as charge-trapping centres. Trapping of two electrons in a chain-like structure of connected triads results in breaking of some of these highly polarizable long bonds. These results establish the foundations of the origin of charge trapping in amorphous phase-change materials, and they may have important implications for our understanding of resistance drift in electronic-memory devices and of electronic-excitation-induced athermal melting.
Original language | English |
---|---|
Pages (from-to) | 6744-6753 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry C |
Issue number | 17 |
DOIs | |
Publication status | Published - 2022 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 1
ASJC Scopus subject areas
- Chemistry(all)
- Materials Chemistry