Abstract
Are lead-free perovskite-inspired materials (PIMs) the wise choice for efficient yet sustainable indoor light harvesting? This feature article outlines how wide-bandgap PIMs can provide a positive answer to this compelling question. The wide band gaps can hinder sunlight absorption, in turn limiting the solar cell performance. However, PIMs based on group VA of the periodic table can theoretically lead to an outstanding indoor power conversion efficiency up to 60% when their band gap is ∼2 eV. Yet, the research on PIM-based indoor photovoltaics (IPVs) is still in an early stage with highest indoor device efficiencies up to 10%. This article reviews the recent advancements on PIMs for IPVs and identifies the main limiting factors of device performance, thus suggesting effective strategies to address them. We emphasize the poor operational stability of the IPV devices of PIMs being the key bottleneck for the vast adoption of this technology. We believe that this report can provide a solid scaffolding for further researching this fascinating class of materials, ultimately supporting our vision that, upon extensive advancement of the stability and efficiency, PIMs with wide bandgap will become a contender for the next-generation absorbers for sustainable indoor light harvesting.
Original language | English |
---|---|
Pages (from-to) | 8616-8625 |
Number of pages | 10 |
Journal | Chemical Communications |
Volume | 59 |
Issue number | 56 |
DOIs | |
Publication status | Published - 11 Jul 2023 |
Publication type | A2 Review article in a scientific journal |
Publication forum classification
- Publication forum level 2
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Catalysis
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry