Abstract
Self-oscillation is a phenomenon where an object sustains periodic motion upon non-periodic stimulus. It occurs commonly in nature, a few examples being heartbeat, sea waves and fluttering of leaves. Stimuli-responsive materials allow creating synthetic self-oscillators fuelled by different forms of energy, e.g. heat, light and chemicals, showing great potential for applications in power generation, autonomous mass transport, and self-propelled micro-robotics. However, most of the self-oscillators are based on bending deformation, thereby limiting their possibilities of being implemented in practical applications. Here, we report light-fuelled self-oscillators based on liquid crystal network actuators that can exhibit three basic oscillation modes: bending, twisting and contraction-expansion. We show that a time delay in material response dictates the self-oscillation dynamics, and realize a freestyle self-oscillator that combines numerous oscillation modes simultaneously by adjusting the excitation beam position. The results provide new insights into understanding of self-oscillation phenomenon and offer new designs for future self-propelling micro-robots.
Original language | English |
---|---|
Article number | 5057 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Nov 2019 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 3
Fingerprint
Dive into the research topics of 'Light-fuelled freestyle self-oscillators'. Together they form a unique fingerprint.Equipment
-
Red Labs for soft photonic, robotic and energy materials
Priimägi, A. (Contact), Vivo, P. (Contact) & Nonappa, N. (Contact)
Materials Science and Environmental EngineeringFacility/equipment: Facility