Machine Learning Heuristics on Gingivobuccal Cancer Gene Datasets Reveals Key Candidate Attributes for Prognosis

Tanvi Singh, Girik Malik, Saloni Someshwar, Hien Thi Thu Le, Rathnagiri Polavarapu, Laxmi N. Chavali, Nidheesh Melethadathil, Vijayaraghava Seshadri Sundararajan, Jayaraman Valadi, P. B. Kavi Kishor, Prashanth Suravajhala

    Research output: Contribution to journalArticleScientificpeer-review

    1 Citation (Scopus)
    11 Downloads (Pure)

    Abstract

    Delayed cancer detection is one of the common causes of poor prognosis in the case of many cancers, including cancers of the oral cavity. Despite the improvement and development of new and efficient gene therapy treatments, very little has been carried out to algorithmically assess the impedance of these carcinomas. In this work, from attributes or NCBI’s oral cancer datasets, viz. (i) name, (ii) gene(s), (iii) protein change, (iv) condition(s), clinical significance (last reviewed). We sought to train the number of instances emerging from them. Further, we attempt to annotate viable attributes in oral cancer gene datasets for the identification of gingivobuccal cancer (GBC). We further apply supervised and unsupervised machine learning methods to the gene datasets, revealing key candidate attributes for GBC prognosis. Our work highlights the importance of automated identification of key genes responsible for GBC that could perhaps be easily replicated in other forms of oral cancer detection.

    Original languageEnglish
    Article number2379
    JournalGenes
    Volume13
    Issue number12
    DOIs
    Publication statusPublished - Dec 2022
    Publication typeA1 Journal article-refereed

    Keywords

    • data mining
    • gene prioritization
    • genomic datasets
    • machine learning
    • oral cancer

    Publication forum classification

    • Publication forum level 1

    ASJC Scopus subject areas

    • Genetics
    • Genetics(clinical)

    Fingerprint

    Dive into the research topics of 'Machine Learning Heuristics on Gingivobuccal Cancer Gene Datasets Reveals Key Candidate Attributes for Prognosis'. Together they form a unique fingerprint.

    Cite this