Abstract
Confining near-infrared (NIR) and mid-infrared (MIR) radiation (1–10 μm) at the nanoscale is one of the main challenges in photonics. Thanks to the transparency of silicon in the NIR-MIR range, optoelectronic systems like electro-optical modulators have been broadly designed in this range. However, the trade-off between energy-per-bit consumption and speed still constitutes a significant bottleneck, preventing such a technology to express its full potentialities. Moreover, the harmless nature of NIR radiation makes it ideal for bio-photonic applications. In this work, we theoretically showcase a new kind of electro-optical modulators in the NIR-MIR range that optimize the trade-off between power consumption, switching speed, and light confinement, leveraging on the interplay between graphene and metamaterials. We investigate several configurations among which the one consisting in a SiO2/graphene hyperbolic metamaterial (HMM) outstands. The peculiar multilayered configuration of the HMM allowed one also to minimize the equivalent electrical capacitance to achieve attoJoule electro/optical modulation at about 500 MHz switching speed. This system manifests the so-called dielectric singularity, in correspondence to which an HMM lens with resolving power of λ/1660 has been designed, allowing to resolve 3 nm-wide objects placed at an interdistance of 3 nm and to overcome the diffraction limit by 3 orders of magnitude. The imaging possibilities opened by such technologies are evident especially in bio-photonic applications, where the investigation of biological entities with tailored/broadband-wavelength radiation and nanometer precision is necessary. Moreover, the modulation performances demonstrated by the graphene-based HMM configure it as a promise for ultrafast and low-power opto-electronics applications.
Original language | Undefined/Unknown |
---|---|
Article number | 12 |
Pages (from-to) | 12218-12230 |
Number of pages | 13 |
Journal | ACS Applied Nano Materials |
Volume | 3 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Publication type | A1 Journal article-refereed |
Keywords
- Graphene
- hyperbolic metamaterials
- metal/insulator architectures
- light confinement
- ultrafast all-optical switching