On homomorphisms between products of median algebras

Miguel Couceiro, Stephan Foldes, Gerasimos C. Meletiou

    Research output: Contribution to journalArticleScientificpeer-review

    4 Citations (Scopus)

    Abstract

    Homomorphisms of products of median algebras are studied with particular attention to the case when the codomain is a tree. In particular, we show that all mappings from a product (Formula presented.) of median algebras to a median algebra (Formula presented.) are essentially unary whenever the codomain (Formula presented.) is a tree. In view of this result, we also characterize trees as median algebras and semilattices by relaxing the defining conditions of conservative median algebras.

    Original languageEnglish
    Pages (from-to)545–553
    Number of pages9
    JournalAlgebra Universalis
    Volume78
    Issue number4
    DOIs
    Publication statusPublished - 2017
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 1

    ASJC Scopus subject areas

    • Algebra and Number Theory

    Fingerprint

    Dive into the research topics of 'On homomorphisms between products of median algebras'. Together they form a unique fingerprint.

    Cite this