Programmable and scalable architecture for graphics processing units

C. Sanchez de la lama, P. Jääskeläinen, J. Takala

    Research output: Contribution to journalArticleScientificpeer-review

    3 Citations (Scopus)
    73 Downloads (Pure)

    Abstract

    Graphics processing is an application area with high level of parallelism at the data level and at the task level. Therefore, graphics processing units (GPU) are often implemented as multiprocessing systems with high performance floating point processing and application specific hardware stages for maximizing the graphics throughput. In this paper we evaluate the suitability of Transport Triggered Architectures (TTA) as a basis for implementing GPUs. TTA improves scalability over the traditional VLIW-style architectures making it interesting for computationally intensive applications. We show that TTA provides high floating point processing performance while allowing more programming freedom than vector processors. Finally, one of the main features of the presented TTA-based GPU design is its fully programmable architecture making it suitable target for general purpose computing on GPU APIs which have become popular in recent years.
    Translated title of the contributionProgrammable and scalable architecture for graphics processing units
    Original languageEnglish
    Pages (from-to)2-11
    JournalLecture Notes in Computer Science
    Volume5657
    DOIs
    Publication statusPublished - 2009
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 1

    Fingerprint

    Dive into the research topics of 'Programmable and scalable architecture for graphics processing units'. Together they form a unique fingerprint.

    Cite this