Pruned Lightweight Encoders for Computer Vision

Jakub Žádník, Markku Mäkitalo, Pekka Jääskeläinen

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

1 Citation (Scopus)
24 Downloads (Pure)

Abstract

Latency-critical computer vision systems, such as autonomous driving or drone control, require fast image or video compression when offloading neural network inference to a remote computer. To ensure low latency on a near-sensor edge device, we propose the use of lightweight encoders with constant bitrate and pruned encoding configurations, namely, ASTC and JPEG XS. Pruning introduces significant distortion which we show can be recovered by retraining the neural network with compressed data after decompression. Such an approach does not modify the network architecture or require coding format modifications. By retraining with compressed datasets, we reduced the classification accuracy and segmentation mean intersection over union (mIoU) degradation due to ASTC compression to 4.9-5.0 percentage points (pp) and 4.4-4.0 pp, respectively. With the same method, the mIoU lost due to JPEG XS compression at the main profile was restored to 2.7-2.3 pp. In terms of encoding speed, our ASTC encoder implementation is 2.3x faster than JPEG. Even though the JPEG XS reference encoder requires optimizations to reach low latency, we showed that disabling significance flag coding saves 22-23% of encoding time at the cost of 0.4-0.3 mIoU after retraining.
Original languageEnglish
Title of host publication2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)
PublisherIEEE
ISBN (Electronic)978-1-6654-7189-3
ISBN (Print)978-1-6654-7190-9
DOIs
Publication statusPublished - 2022
Publication typeA4 Article in conference proceedings
EventIEEE International Workshop on Multimedia Signal Processing - Shanghai, China
Duration: 26 Sept 202228 Sept 2022

Publication series

Name IEEE International Workshop on Multimedia Signal Processing
ISSN (Print)2163-3517
ISSN (Electronic)2473-3628

Conference

ConferenceIEEE International Workshop on Multimedia Signal Processing
Country/TerritoryChina
CityShanghai
Period26/09/2228/09/22

Publication forum classification

  • Publication forum level 1

Fingerprint

Dive into the research topics of 'Pruned Lightweight Encoders for Computer Vision'. Together they form a unique fingerprint.

Cite this