Abstract
Pt/alpha-Fe2O3 nanocomposites were synthesized on fluorine-doped tin oxide (FTO) substrates by a sequential plasma enhanced-chemical vapor deposition (PE-CVD)/radio frequency (RF) sputtering approach, tailoring the overall Pt content as a function of sputtering time. The chemico-physical properties of the as-prepared systems were extensively investigated by means of complementary techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy, and compared to those of the homologous Pt/alpha-Fe2O3 systems annealed in air prior and/or after sputtering. The obtained results evidenced that the material compositional, structural and morphological features, with particular regard to the Pt oxidation state and hematite nano-organization, could be finely tailored as a function of the adopted processing conditions. Pt/alpha-Fe2O3 systems were finally tested as photoanodes in photoelectrochemical (PEC) water splitting experiments, evidencing a remarkable interplay between functional performances and the above-mentioned material properties, as also testified by transient absorption spectroscopy (TAS) results.
Original language | English |
---|---|
Pages (from-to) | 12899-12907 |
Number of pages | 9 |
Journal | Physical Chemistry Chemical Physics |
Volume | 17 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2015 |
Publication type | A1 Journal article-refereed |
Keywords
- ALPHA-FE2O3 THIN-FILMS
- PHOTOELECTROCHEMICAL PERFORMANCE
- NANOSTRUCTURED ALPHA-FE2O3
- HYDROTHERMAL METHOD
- WATER OXIDATION
Publication forum classification
- Publication forum level 1