QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

Kim Jeongnim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chandler Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele Casula, David M Ceperley, Simone Chiesa, Bryan K Clark, Raymond C Clay III, Kris T Delaney, Mark Dewing, Kenneth P Esler, Hongxia Hao, Olle Heinonen, Paul R C Kent, Jaron T. KrogelIlkka Kylänpää, Ying Wai Li, M Graham Lopez, Ye Luo, Fionn D Malone, Richard M Martin, Amrita Mathuriya, Jeremy McMinis, Cody A Melton, Lubos Mitas, Miguel A Morales, Eric Neuscamman, William D Parker, Sergio D Pineda Flores, Nichols A Romero, Brenda M Rubenstein, Jacqueline A R Shea, Hyeondeok Shin, Luke Shulenburger, Andreas F Tillack, Joshua P Townsend, Norm M Tubman, Brett Van Der Goetz, Jordan E Vincent, D ChangMo Yang, Yubo Yang, Shuai Zhang, Luning Zhao

Research output: Contribution to journalArticleScientificpeer-review

238 Citations (Scopus)

Abstract

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Original languageEnglish
Article number195901
JournalJournal of Physics: Condensed Matter
Volume30
DOIs
Publication statusPublished - 2018
Externally publishedYes
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 2

Fingerprint

Dive into the research topics of 'QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids'. Together they form a unique fingerprint.

Cite this