Abstract
In this paper we describe the anatomy of a real-time facial analysis system. The system recognizes the age, gender and facial expression from users in appearing in front of the camera. All components are based on convolutional neural networks, whose accuracy we study on commonly used training and evaluation sets. A key contribution of the work is the description of the interplay between processing threads for frame grabbing, face detection and the three types of recognition. The python code for executing the system uses common libraries--keras/tensorflow, opencv and dlib--and is available for download.
Original language | English |
---|---|
Number of pages | 2 |
Publication status | Published - Nov 2018 |
Publication type | Not Eligible |