Real Time System for Facial Analysis

Janne Tommola, Pedram Ghazi, Bishwo Adhikari, Heikki Huttunen

    Research output: Other conference contributionAbstractScientific

    Abstract

    In this paper we describe the anatomy of a real-time facial analysis system. The system recognizes the age, gender and facial expression from users in appearing in front of the camera. All components are based on convolutional neural networks, whose accuracy we study on commonly used training and evaluation sets. A key contribution of the work is the description of the interplay between processing threads for frame grabbing, face detection and the three types of recognition. The python code for executing the system uses common libraries--keras/tensorflow, opencv and dlib--and is available for download.
    Original languageEnglish
    Number of pages2
    Publication statusPublished - Nov 2018
    Publication typeNot Eligible

    Fingerprint

    Dive into the research topics of 'Real Time System for Facial Analysis'. Together they form a unique fingerprint.

    Cite this