Reversal of the hofmeister series: Specific ion effects on peptides

Jana Paterová, Kelvin B. Rembert, Jan Heyda, Yadagiri Kurra, Halil I. Okur, Wenshe R. Liu, Christian Hilty, Paul S. Cremer, Pavel Jungwirth

    Research output: Contribution to journalArticleScientificpeer-review

    120 Citations (Scopus)

    Abstract

    Ion-specific effects on salting-in and salting-out of proteins, protein denaturation, as well as enzymatic activity are typically rationalized in terms of the Hofmeister series. Here, we demonstrate by means of NMR spectroscopy and molecular dynamics simulations that the traditional explanation of the Hofmeister ordering of ions in terms of their bulk hydration properties is inadequate. Using triglycine as a model system, we show that the Hofmeister series for anions changes from a direct to a reversed series upon uncapping the N-terminus. Weakly hydrated anions, such as iodide and thiocyanate, interact with the peptide bond, while strongly hydrated anions like sulfate are repelled from it. In contrast, reversed order in interactions of anions is observed at the positively charged, uncapped N-terminus, and by analogy, this should also be the case at side chains of positively charged amino acids. These results demonstrate that the specific chemical and physical properties of peptides and proteins play a fundamental role in ion-specific effects. The present study thus provides a molecular rationalization of Hofmeister ordering for the anions. It also provides a route for tuning these interactions by titration or mutation of basic amino acid residues on the protein surface.

    Original languageEnglish
    Pages (from-to)8150-8158
    Number of pages9
    JournalJournal of Physical Chemistry Part B
    Volume117
    Issue number27
    DOIs
    Publication statusPublished - 11 Jul 2013
    Publication typeA1 Journal article-refereed

    ASJC Scopus subject areas

    • Physical and Theoretical Chemistry
    • Materials Chemistry
    • Surfaces, Coatings and Films

    Fingerprint

    Dive into the research topics of 'Reversal of the hofmeister series: Specific ion effects on peptides'. Together they form a unique fingerprint.

    Cite this