Semiclassical two-step model for strong-field ionization

N. I. Shvetsov-Shilovski, M. Lein, L. B. Madsen, E. Räsänen, C. Lemell, J. Burgdörfer, D. G. Arbó, K. Tokési

    Research output: Contribution to journalArticleScientificpeer-review

    125 Citations (Scopus)

    Abstract

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the photoelectron angular distributions.

    Original languageEnglish
    Article number013415
    JournalPhysical Review A
    Volume94
    Issue number1
    DOIs
    Publication statusPublished - 19 Jul 2016
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 2

    ASJC Scopus subject areas

    • Atomic and Molecular Physics, and Optics

    Fingerprint

    Dive into the research topics of 'Semiclassical two-step model for strong-field ionization'. Together they form a unique fingerprint.

    Cite this