Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

Fikret E. Kapucu, Inkeri Välkki, Jarno E. Mikkonen, Chiara Leone, Kerstin Lenk, Jarno M.A. Tanskanen, Jari A.K. Hyttinen

    Research output: Contribution to journalArticleScientificpeer-review

    9 Citations (Scopus)
    238 Downloads (Pure)


    Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis.
    Original languageEnglish
    Article number112
    JournalFrontiers in Computational Neuroscience
    Publication statusPublished - 18 Oct 2016
    Publication typeA1 Journal article-refereed

    Publication forum classification

    • Publication forum level 1


    Dive into the research topics of 'Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements'. Together they form a unique fingerprint.

    Cite this