Abstract
Light-responsive supramolecular self-assemblies exhibit interplay between order and dynamics of the self-assembling motifs, through which the thermal isomerization rate of azobenzene chromophores can be tuned by orders of magnitude. By using supramolecular complexes of 4-(4-alkylphenylazo)phenols hydrogen-bonded to poly(4-vinylpyridine) as model systems, we demonstrate that the thermal isomerization rate of the hydroxyazobenzene derivatives increases 5700-fold when the material undergoes a transformation from a disordered, low-azobenzene-concentration state to a high-concentration state exhibiting lamellar, smectic-like self-assembly. Drastically smaller thermal isomerization rates are observed in disordered structures. This allows us to attribute the change to a combination of increased number density of the hydroxyazobenzenes inducing plasticization, and cooperativity created by the chromophore-chromophore interactions through self-assembled molecular order and alignment. Our results pinpoint the importance of molecular self-assembly and intermolecular interactions in modifying the dynamics in supramolecular complexes in a controlled manner. We foresee this to be important in light-controlled dynamic materials.
Original language | English |
---|---|
Pages (from-to) | 4095-4101 |
Number of pages | 7 |
Journal | Macromolecules |
Volume | 49 |
Issue number | 11 |
DOIs | |
Publication status | Published - 14 Jun 2016 |
Publication type | A1 Journal article-refereed |
Publication forum classification
- Publication forum level 2
ASJC Scopus subject areas
- Organic Chemistry
- Materials Chemistry
- Polymers and Plastics
- Inorganic Chemistry