TY - JOUR
T1 - Temperature-dependence of the single-cell variability in the kinetics of transcription activation in Escherichia coli
AU - Goncalves, Nadia
AU - Startceva, Sofia
AU - Palma, Cristina
AU - Bahrudeen, Mohamed
AU - Oliveira, Samuel
AU - Ribeiro, Andre Sanches
N1 - © 2017 IOP Publishing Ltd.
PY - 2018/1
Y1 - 2018/1
N2 - From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. For this, for temperature shifts of various degrees, we obtain the distributions of transcription activation times as well as the distributions of intervals between consecutive RNA productions following activation in individual cells. We then propose a novel methodology that makes use of deconvolution techniques to extract the mean and the variability of the distribution of intake times. We find that cells, following shifts to low temperatures have higher intake times, although, counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using a new methodology for direct estimation of mean intake times from measurements of activation times at various inducer concentrations. The results confirm that E. coli's inducer intake times from the environment are significantly higher, following a shift to a sub-optimal temperature. Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in intake times.
AB - From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. For this, for temperature shifts of various degrees, we obtain the distributions of transcription activation times as well as the distributions of intervals between consecutive RNA productions following activation in individual cells. We then propose a novel methodology that makes use of deconvolution techniques to extract the mean and the variability of the distribution of intake times. We find that cells, following shifts to low temperatures have higher intake times, although, counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using a new methodology for direct estimation of mean intake times from measurements of activation times at various inducer concentrations. The results confirm that E. coli's inducer intake times from the environment are significantly higher, following a shift to a sub-optimal temperature. Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in intake times.
U2 - 10.1088/1478-3975/aa9ddf
DO - 10.1088/1478-3975/aa9ddf
M3 - Article
C2 - 29182518
SN - 1478-3967
VL - 15
JO - Physical Biology
JF - Physical Biology
IS - 2
ER -