Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes

Early Growth Genetics Consortium, Jonathan P. Bradfield, Rachel L. Kember, Anna Ulrich, Zhanna Balkiyarova, Akram Alyass, Izzuddin M. Aris, Joshua A. Bell, K. Alaine Broadaway, Zhanghua Chen, Jin Fang Chai, Neil M. Davies, Dietmar Fernandez-Orth, Mariona Bustamante, Ruby Fore, Amitavo Ganguli, Anni Heiskala, Jouke Jan Hottenga, Carmen Íñiguez, Sayuko KobesJaakko Leinonen, Estelle Lowry, Leo Pekka Lyytikainen, Anubha Mahajan, Niina Pitkänen, Theresia M. Schnurr, Christian Theil Have, David P. Strachan, Elisabeth Thiering, Suzanne Vogelezang, Kaitlin H. Wade, Carol A. Wang, Andrew Wong, Louise Aas Holm, Alessandra Chesi, Catherine Choong, Miguel Cruz, Paul Elliott, Steve Franks, Christine Frithioff-Bøjsøe, W. James Gauderman, Joseph T. Glessner, Vicente Gilsanz, Kendra Griesman, Robert L. Hanson, Mika Kähönen, Nina Mononen, Johan G. Eriksson, Terho Lehtimäki, Juha Mykkänen, John A. Shepherd

Research output: Contribution to journalArticleScientificpeer-review

1 Downloads (Pure)


BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.

Original languageEnglish
Article number22
JournalGenome biology
Issue number1
Publication statusPublished - 16 Jan 2024
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 3

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Cell Biology


Dive into the research topics of 'Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes'. Together they form a unique fingerprint.

Cite this