Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods

Miikael Lehtimäki, Binisha H. Mishra, Coral Del-Val, Leo Pekka Lyytikäinen, Mika Kähönen, C. Robert Cloninger, Olli T. Raitakari, Reijo Laaksonen, Igor Zwir, Terho Lehtimäki, Pashupati P. Mishra

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

Genetic architecture of plasma lipidome provides insights into regulation of lipid metabolism and related diseases. We applied an unsupervised machine learning method, PGMRA, to discover phenotype-genotype many-to-many relations between genotype and plasma lipidome (phenotype) in order to identify the genetic architecture of plasma lipidome profiled from 1,426 Finnish individuals aged 30–45 years. PGMRA involves biclustering genotype and lipidome data independently followed by their inter-domain integration based on hypergeometric tests of the number of shared individuals. Pathway enrichment analysis was performed on the SNP sets to identify their associated biological processes. We identified 93 statistically significant (hypergeometric p-value < 0.01) lipidome-genotype relations. Genotype biclusters in these 93 relations contained 5977 SNPs across 3164 genes. Twenty nine of the 93 relations contained genotype biclusters with more than 50% unique SNPs and participants, thus representing most distinct subgroups. We identified 30 significantly enriched biological processes among the SNPs involved in 21 of these 29 most distinct genotype-lipidome subgroups through which the identified genetic variants can influence and regulate plasma lipid related metabolism and profiles. This study identified 29 distinct genotype-lipidome subgroups in the studied Finnish population that may have distinct disease trajectories and therefore could be useful in precision medicine research.

Original languageEnglish
Article number3078
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - Feb 2023
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 1

ASJC Scopus subject areas

  • General
  • Genetics

Fingerprint

Dive into the research topics of 'Uncovering the complex genetic architecture of human plasma lipidome using machine learning methods'. Together they form a unique fingerprint.

Cite this