Abstract
Energy transition challenges the methods used in the operational planning of transmission systems and increases the need for more extensive and coordinated use of flexibility mechanisms. This paper presents how different types of flexibility mechanisms can be utilized in the outage planning of transmission systems to mitigate the impacts of N–1 contingency condition during a planned outage and to reduce the need for preventive curtailment. The flexibility mechanisms presented in this paper focus on solving regional and local grid congestions caused by thermal overloading of grid components after a contingency. The analyzed flexibility mechanisms can be divided into two categories: technical and market-based flexibility mechanisms. Factors affecting the feasibility of the analyzed flexibility mechanisms are identified in this paper. The paper discusses how different types of flexibility mechanisms can be combined to solve regional grid congestions considering the short- and long-term thermal ratings of grid components as an enabler of market-based flexibility.
Original language | English |
---|---|
Title of host publication | 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) |
Publisher | IEEE |
Number of pages | 6 |
ISBN (Electronic) | 978-1-6654-8032-1 |
DOIs | |
Publication status | Published - 2022 |
Publication type | A4 Article in conference proceedings |
Event | IEEE PES Innovative Smart Grid Technologies Conference Europe - Novi sad, Serbia Duration: 10 Oct 2022 → 12 Oct 2022 |
Conference
Conference | IEEE PES Innovative Smart Grid Technologies Conference Europe |
---|---|
Abbreviated title | ISGT PES Europe 2022 |
Country/Territory | Serbia |
City | Novi sad |
Period | 10/10/22 → 12/10/22 |
Keywords
- Contingency management
- Europe
- Planning
- Smart grids
- outage planning
- flexibility mechanisms
- congestion management
- market-based flexibility
Publication forum classification
- Publication forum level 1