Watt-level blue light for precision spectroscopy, laser cooling and trapping of strontium and cadmium atoms

Jonathan N. Tinsley, Satvika Bandarupally, Jussi Pekka Penttinen, Shamaila Manzoor, Sanna Ranta, Leonardo Salvi, Mircea Guina, Nicola Poli

Research output: Contribution to journalArticleScientificpeer-review

1 Downloads (Pure)

Abstract

High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.75 nm and 460.86 nm of respective relevance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the 1S01P1 cadmium transition at 228.87 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of 114Cd and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time.

Original languageEnglish
Pages (from-to)25462-25476
Number of pages15
JournalOptics Express
Volume29
Issue number16
DOIs
Publication statusPublished - 2021
Publication typeA1 Journal article-refereed

Publication forum classification

  • Publication forum level 1

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Watt-level blue light for precision spectroscopy, laser cooling and trapping of strontium and cadmium atoms'. Together they form a unique fingerprint.

Cite this