@inproceedings{dd93a66b9a6840cca978c022b7a0d134,
title = "WLD-Reg: A Data-Dependent Within-Layer Diversity Regularizer",
abstract = "Neural networks are composed of multiple layers arranged in a hierarchical structure jointly trained with a gradient-based optimization, where the errors are back-propagated from the last layer back to the first one. At each optimization step, neurons at a given layer receive feedback from neurons belonging to higher layers of the hierarchy. In this paper, we propose to complement this traditional{\textquoteright}between-layer{\textquoteright} feedback with additional{\textquoteright}within-layer{\textquoteright} feedback to encourage the diversity of the activations within the same layer. To this end, we measure the pairwise similarity between the outputs of the neurons and use it to model the layer{\textquoteright}s overall diversity. We present an extensive empirical study confirming that the proposed approach enhances the performance of several state-of-the-art neural network models in multiple tasks. The code is publically available at https://github.com/firasl/AAAI-23WLD-Reg.",
author = "Firas Laakom and Jenni Raitoharju and Alexandros Iosifidis and Moncef Gabbouj",
note = "Funding Information: This work was supported by NSF-Business Finland Center for Visual and Decision Informatics (CVDI) project AMALIA. Publisher Copyright: Copyright {\textcopyright} 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.; AAAI Conference on Artificial Intelligence ; Conference date: 07-02-2023 Through 14-02-2023",
year = "2023",
month = jun,
day = "27",
doi = "10.1609/aaai.v37i7.26015",
language = "English",
series = "Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023",
publisher = "AAAI PRESS",
number = "7",
pages = "8421--8429",
editor = "Brian Williams and Yiling Chen and Jennifer Neville",
booktitle = "AAAI-23 Technical Tracks 7",
}