Plasticity of amorphous Al2O3 at room temperature

Aktiviteetti: Konferenssiesitelmä

Description

Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. Using in situ TEM and numerical simulations, we show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism [1]. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws coupled with an effective activation energy that allows sufficient bond-switching activity in the atom network. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations and we formulate a criterion that can help to find other oxides with similar behavior. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries. Moreover, the results indicate that amorphous oxides have potential to be used as high-strength, damage-tolerant engineering materials. The results reveal new aspects of glass thermodynamics below glass transition temperature and could lead to a new paradigm on how glass materials can be used in engineering. [1] Frankberg et al. Science Vol. 366, Issue 6467, pp. 864-869 (2019).
Aikajakso2021
Tapahtuman otsikkoE-MRS Spring meeting 2021
Tapahtuman tyyppiConference
Tunnustuksen arvoInternational